Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163565

RESUMO

Breastfeeding, which is essential for the survival of mammalian infants, is critically mediated by pulsatile secretion of the pituitary hormone oxytocin from the central oxytocin neurons located in the paraventricular and supraoptic hypothalamic nuclei of mothers. Despite its importance, the molecular and neural circuit mechanisms of the milk ejection reflex remain poorly understood, in part because a mouse model to study lactation was only recently established. In our previous study, we successfully introduced fiber photometry-based chronic imaging of the pulsatile activities of oxytocin neurons during lactation. However, the necessity of Cre recombinase-based double knock-in mice substantially compromised the use of various Cre-dependent neuroscience toolkits. To overcome this obstacle, we developed a simple Cre-free method for monitoring oxytocin neurons by an adeno-associated virus vector driving GCaMP6s under a 2.6 kb mouse oxytocin mini-promoter. Using this method, we monitored calcium ion transients of oxytocin neurons in the paraventricular nucleus in wild-type C57BL/6N and ICR mothers without genetic crossing. By combining this method with video recordings of mothers and pups, we found that the pulsatile activities of oxytocin neurons require physical mother-pup contact for the milk ejection reflex. Notably, the frequencies of photometric signals were dynamically modulated by mother-pup reunions after isolation and during natural weaning stages. Collectively, the present study illuminates the temporal dynamics of pulsatile activities of oxytocin neurons in wild-type mice and provides a tool to characterize maternal oxytocin functions.


Assuntos
Lactação , Ocitocina , Feminino , Camundongos , Animais , Lactação/fisiologia , Ocitocina/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/fisiologia , Núcleo Supraóptico/fisiologia , Núcleo Hipotalâmico Paraventricular , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...